AD-R150 960 NONLINEAR 0-1 PROGRAMMING: 1 LINEARIZATION TECHNIOUES 171
REVISION(U> CARNEGIE-MELLON UNIY PITTSBURG
MANAGEMENT SCIENCES RESEARCH GROUP E BRLAS ET AL.
UNCLASSIFIED FEB 83 MSRR-467(R)A N80814-75-C-0621 F/G 1271

........ -
nmen
omic




RTINS T e e I L IR
e et et e O .
» CEREAI RSt .PL&, oAt a2 ....br.;.-\’;

2,0
15

ﬂm 1.6
==

S EEE A_

A d933448

Tal b # Ve Wl WA

MICROCOPY RESOLUTION TEST CMART
NATIONAL BUREAU OF STANDARDS-1963-A

R WS o N LV g WA W o N )

.n.-.-vnhnll- h R R
SRR S X SN,




AD-A150 960

NONLINEAR O~1 PROGRAMMING:
I. LINEARIZATION TECHNIQUES
by
i=%

Egon Balas |
Carnegie-Mellon University ‘
and i
Josaph P. Mazzola :

Carnegie-Mellon University

PITTSBURGH, PENNSYLVANIA 15213

ONe FILE COPY

e e LN e L S e

GRADUATEWOFWMAM

WILLIAM LARIMER MELLON, FOUNDER

1ﬁnl<hunnnonx!uulhoeﬂ»QPE:r"‘

blic release and
gz;ggmnoni:\l &

----------------------------------

»

- AR
- . - - -
' )
-~
: le
| Wooen
i e
t " .
- L _:
, ~.
! R
| Lo
1
o
. 1




L T R TS A R i

T TN R T T B T T T I R T T T R T T T L T T T T N R AR o

::‘;';

/ N

W.P.#20-80-81 "

Management Sciences Research Report No. 467(R)A ;?

‘ : ;E&

oo

NONLINEAR 0-1 PROGRAMMING: B

I. LINEARIZATION TECHNIQUES o

by o

Egon Balas ::j:

Carnegie-Mellon University e

and ol

Joseph P. Mazzola o

University of North Carolina at Chapel Hill S

L

October 1980 -~

Revised May 1981 O

and February 1983 o

- ‘..‘

The research underlying this report was supported by Grant ECS-7902506 T
of the National Science Foundation and Contract NO0Q14-75-C-0621 NR 047-048

with the U.S. Office of Naval Research. Reproduction in whole or in part O

is permitted for any purpose of the U.S. Government. -

Management Science Research Group ;_

Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

l‘l
L

OCument hqg b:en approved
.J?deqih

L TR AL A AR

R R I PR I S T e m e e P e et e e e et et T T T T
N N N, SR \ <.

2% i S




..
P I
N el

B
s s
s

o
oy
’
e
.
.

Abstract e

!i Any real-valued nonlinear function in 0-1 variables can be e
rewritten as a multilinear function., We discuss classes of lower and

fi upper bounding linear expressions for multilinear functioms in 0-1

variables, For any multilinear inequality in 0-1 variables, we define ol
an equivalent family of linear inequalities. This family contains the
well known system of generalized covering inequalities, as well as other
linear equivalents of the multilinear inequality that are more compact,
i.e., of smaller cardinality. In a companion paper«[*ﬂﬂ,/we discuss
dominance relations between various linear equivalents of a multilinear
inequality, and describe a class of algorithms for multilinear 0-1

programming based on these results,
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I. LINEARIZATION TECHNIQUES ——emiutions L o
3 Aveilebil e o oA ]
:_: VAl Lo =
% by Dist ( Sl .

- _ Egon Balas and Joseph B. Mazzola /z,( f !

1. Introduction

It is well known [15] that a real-valued function f£(x) in O0-1

T variables can be rewritten as a multilinear function in the same variables, ';ff
::"' ‘ i.e. ’ . ~:1
X T
" (1) £) = L a(m x), x =0orl, ie U Q, s
o jeN 7 ieq joN I
2 where aj, jeN, are real numbers, and 7 means product. Thus, without loss of T

0 generality, when discussing nonlinear 0-1 programs it is sufficient to con-
i' sider the general multilinear program
’ (MLP) max{f (x) |£ (x) <b , keK, x binary},
;i where fo and £, , keK, are multilinear functions of the form (1).
i{ The subject of nonlinear 0-1 programming has received considerable
> attention in the literature (see for example [8-9, 20, 1-3, 17, 14, 19,
" 10-11, 5, 12-13, 16]. For a survey of the area, see Hansen [18], ﬁ*i
9 i
20 Applications involving nonlinear 0O-1 programs arise in a variety }k}q
. . :'-...
of areas. For a partial list of these, along with references, see our _
3 companion paper [7]. :ifii
- B
- The most frequently used approach to solving (MLP) consists of R
"’ linearizing the problem and then solving the resulting linear 0-1 program. -
- \' -.l
< AR
" An early linearization, due to Fortet [8, 9], involves the replacement of NN
o, " o
o, oo
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every distinct product of 0-1 variables by a new 0-1 variable and a pair

of new inequalities. This approach, while useful when there are only a

4
S

few distinct products of 0-1 variables, becomes less and less practical as -

y %5 .'h'.ll."l

the number of such products increases. Glover and Woolsey [10, 11] pointed

out that under certain conditions the number of new constraints can be

"j'_ reduced, and the new 0-1 variables can be replaced by continuous variables.
A linearization of (MLP) that does not require new variables was

given by Granot and Hammer [14]), who have shown (MLP) to be equivalent to

a generalized covering problem, 1i.e., a set covering problem in the original

variables and their complements., While the number of covering inequalities

in this formulation tends to be exponential in the number of variables, :.-::".:;

Granot, Granot and Kallberg [13] (see also Granot and Gramot [12]) have
recently used this linearization in an algorithm that generates the constraints
sequentially, as needed, and for relatively sparse problems manages to avoid ol

producing an excessively large number of them. A

In this paper we develop a new linearization for nonlinear functions ':.-'::-

and inequalities in 0-1 variables, which uses only the original variables. 3

Our results were first presented in [51 and then circulated under [6].
: In section 2, we introduce some families of lower and upper bounding -J

affine functions for the multilinear function f(x) of (1). We start by

assuming that a, > 0, jeN, and define a family £ of affine functions gM(x),

3
one for every MSN, such that gM(x) < f(x) for all binary x, and £ is
complete in the sense that for every binary x some function in # is equal to
-~ f(x) . We then identify a proper subfamily of £ that is also complete.

Next we define a family %{ of linear functions hcp(x), one for every mapping

e k'q‘.'h.'.A-". \..:\-.:‘.;:. .\. I A A “a "‘-;i

o’ a LA -5‘:'-
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¢ that associates to any set Q 3 one of its elements, such that h q?(x) > £(x)
for all binary x, and Y is complete. We then identify a proper subfamily

of U that is also complete. We establish several properties of these families

of lower and upper bounding functions, and then combine the above results

to define a (complete) family BO of lower bounding affine functions for a

multilinear function f(x) with coefficients a 3 of arbitrary sign.

In section 3, we turn to inequalities of the form s
(2) f(x) <b

where f£(x) is the multilinear function given by (1) and x is binary. For

a multilinear inequality (2) in 0-1 variables, we introduce a family 5 of S
linear inequalities, equivalent to (2) in the sense of having the same solu-
tion set. The members of 7 correspond to subsets of N that are covers for

the inequality (2). The family ¥ strictly contains the family of generalized

covering inequalities defined in [14]. More specifically, the generalized “"’x
covering inequalities are those members of ¥ associated with minimal covers E:‘:
- for (2). Furthermore, ¥ typically contains more compact linearizations of :j
.:- (2) than the family of generalized covering inequalities, i.e., linear ‘
equivalents of (2) that are of smaller cardinality than the latter family.
3 These more compact linearizations are associated with covers for (2) that
are not minimal.
In a companion paper [7], we characterize certain dominance relations
< between members of the family 5, and give a procedure for strengthening
.:‘ inequalities of 7 that satisfy certain conditions. Based on this, we have '-.\‘
E developed and implemented a class of algorithms for multilinear 0-1 progrms S\
\' that we describe in [7], where we also discuss our computational experience. :_:
o ey
:::: :**

. e e A e e e m e e s e T p e tmte et ta e % aate et an e e
S ORI RS A L £ L S S S R N, O

S RO LK St \

8

4
.

f et T e
PR

et Y
O

PR
B




.
v, A
g - [ PR ST

JES A L L T SR TR T - N LR S

- GPWIge + &

2. Lower and Upper Bounding Affine Functions

-I Consider the multilinear function (1) of section 1, and for any

MCcN, let QM = jLin Qj’

let Q(x) = [ieQ‘xi = 1} be the support of x. A function g(x) is said to

and let Q = Qy, q = |Q|. Also, for any x ¢ {0,1}%,

be a lower (upper) bounding function for £(x) if f(x) > g(x) (£(x) £ g(x))
for all x ¢ {0,1}9.

In what follows, summation over the empty set is always taken to
yield zero.

Lemma 1. For j¢N, define

(3) p,(x) = m x » 8,(x) = ¥ x, - lQ,| + 1. .
R T A BT .
3 3 1
Then for every jeN and x ¢ [o,l}q,
j (%) Py 20, py(x) 2 8,0,
and
pj (x) =0 if and oniy if \Qj\Q(x)\ >1,
(5)
I pj(x) = sj(x) if and only 1if ‘QJ\Q(x)] < 1.
.j'- Proof. (4) follows from (3), while (5) follows from (3), (4) and
. the definition of Q(x).]| —
;: Next we introduce a family of lower bounding affine functions for
a given f(x) with positive coefficients, The family has a member for every J
! subset of N, . .
Theorem 1., Let £(x) be as in (1), with aj > 0, jeN, and for every McN,
S Aefine
i (6) B = T (=== a,)x, - & (|Q,| -Da,.
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Then every x ¢ {0,1}9 satisfies the inequality

(My f£(x) > 3M(")

for every MCN, and (4)M holds with equality if and only if

® erle e | = 0) = M e (a]le,e | < 1),

Proof. Since

f(x) = ¢ a.p,(x)

P
jan 34

and for any M ¢c N

gM(x) = v as (x),

8
e 33

(7)M follows from (4), Further, from the definitions £f(x) = gu(x) if
and only if Pj(x) = 0 for jeN\M and pj(x) = sj(x) for jeM, and therefore
(5) implies (8).]l

Remark 1. For every x ¢ {0,1}?, there exists some MSN such that

£(x) = gy (x). i
®u T

Proof. Set M = {j¢N|Qj SQ(x)}. Then x and M satisfy (8), hence -Z':-.J

s

f(x) = gM(x).ll .
Denoting by fj (x) the jth term of £(x) in (1) and applying Theorem 1 ,

to fj (x), we obtain fj (x) > g{j}(x). Furthermore, we have :\-3
Remark 2, (x) = Z g¢,1(%). L ‘)
My "0 =

Proof. By applying the definition of g (x) to {j} for each jeM.|| :313il.

.f'.-.-'_:

i

SBRAL N4 R N A T




s -6- L
-. Remark 3. For all McN and AeR! | such that 0 < >‘j <1, jeM, ....J
S A L
(7 £(x) > Z A, g8,1(%)
o A
v o
Ve for all x ¢ {0,1}9. b

Proof. Follows from )‘j >0, jeM, fj(x) > g{j](x), jeM, and

£(x) > T fj(x).H
jeM

When f(x) is a quadratic function, the family of lower bounding s

r. 4
= functions given by (7):; specializes to the one defined by Hammer, Hansen -
fii'.l and Simeone [16]. 32'-_5@
o A set ¥ of lower (upper) bounding functions h(x) for f£(x) will be :_:'_._'_1
_ ’ ”',4
L called complete if for every x ¢ {O,I}q there exists h ¢ ¥ such that h(x) = f£(x). -

From Remark 1, the set £ = [gMc:) |McN} is complete. Since £ is fairly

large (l£l = Z‘Nl), it 18 of interest to find proper subsets of # that are

i complete. Next we identify one such subset.

. For any MgN, define :
- 200 = (36 [Q,\qy| < 1} o
:::: ’ Clearly, McE(M) for all McN. Also, note that for arbitrary subsets j:::‘_::
- ::"-
2y My, M) cN, M, # M, does not imply E(M)) # E(4,). ::.‘::::;
. - 3
ET Consider now the family ~—
::::: {0 = [gE ™) (x) \Mc N} ]
.'::.':
J ._" v .1
::'. '*::"‘_1
e RENG
¥ 3
o e
< s
o N
r-' . . -.'.i
r\’f :.._: A
., .o
’\Q. :‘--O.
¥ {
F\: R
f:.o '-‘.;- AL R A AN ';t' SN AT - PN AR S S g S R Y &, e e X : *
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of lower bounding functions for f£(x), whose cardinality is typically much
smaller than that of .

Theorem 2. Let £(x) be as in (1), with a, > 0, jeN. Then:ﬂo is a

3

complete set of lower bounding functions for f(x).
Proof. For a given x ¢ {0,1}9, define L = {jeNle € Q(x)}. Then

SE(L) € aeo, and condition (8) is satisfied for M = E(L), which implies
£(x) = 8y (x). Since this is true for every x ¢ {0,1 13, #, ts complete.||

Remark 4, For every MG N, there exists some x € {0,1}‘l such that
f(x) = BE(M)(X)'

Proof. For given MG N, let x be defined by Q(X) = U Qj‘ Then
jeM

Gerflopacd) = 0} = eap = {ev|lo\ed| < 13,

and hence, from Theorem 1, £(X) = gE(M) .||
Note that, while every lower bounding function in £0 is "attained" by
£(x) for some x ¢ {0,1}%, the same is not true in general with respect to

the larger family £. For example, let
£f(x) = X Xy%q + X, Xg + X%, + X)X + XyXg + X%,
and choose M = {1,2}, where Q = {1,2,3], Q, = {4,5}. Then the lower bounding

function
gu 2}(x) = x1+x2+x3+xa+x5 -3
is not equal to £(x) for any x ¢ {0,1}5.

Next we illustrate the families . and =£_0 on an example.

Exampla 1. Let

f(x) = 3::1x2x3 + 2::1::4 + XXX, .

AU ',

R




-8- 3
o
Then Ql = {1a2’3}9 QZ = {134}: Q3 = {2’334}’ and e
Y 8{1,2,3} 5%, + 4x2 + 4x, + 3x, - 10 ..'-:;
3l o
8(1,2] = 5%, + 3x, + 3xy +2x, - 8 AN
’ e,
8{2 3} =2x1+ x2+ x3+3x4- 4
3{1,3} = 3x1 + 4x2 + 4x3 + x, - 8
8{1} = 3x1 + 3x2 + 3x3 - 6
P—
3{2} = le + 2x4 - 2 ; ‘
." ‘ ]
833 = Xpt X3+ x, - 2 S
g, = 0
‘. -.
: A complete system of lower bounding functions consists of MRS
£0 = {8{1’2’3}’ g{z}s gﬂ}’
since for all Mc({1,2,3}, M # {2}, 9, we have E(M) = {1,2,3].
) We now turn to upper bounding linear functions for f(x). Let @
N
. be a mapping that associates to every j¢N some i¢Q,, i.e., 9(j)eQ,, jeN,

N e h I

and let ¢ be the set of all such mappings.

. Theorem 3. Let f(x) be as in (1), with a, > 0, jeN. For ve &, define

3

hp(x) = jEN TN

Then every x ¢ [O,I}q satisfies the inequality

: (9 £x) <h_(x)
3 © P

for every ge3, and (9)¢ holds as equality if and omly if ¢(J) cQj\Q(x) for

all jeN such that Qj\Q(x) + 0.

“» . . .
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Proof. For a given x¢ {0,119, define M = {chle £Q(x)}. Then for

every 9e @, -_
f(x) = L a (by the choice of M) \
jau 3 s

(10) < jEN ajxq)(j) = h:p(X) (since aj > 0, jeN),

i.e., (9)¢is satisfied.

[ If o(3) €Q\Q(x) for all jeN such that Q,\Q(x) # B, then x ;) =0, o
¥ jeN\M, and the inequality in (10), hence in (9)(9, holds as equality.
b .. R
F Conversely, if o(j) er NQ(x) for some jeN\M, then xw(j) = 1 and (9)cp holds :._
» as strict inequality since a > 0, jeN.||
1 Remark 5. If f(x) is as in (1) but with aj < 0, jeN, rten for every
ve?d, h(p(x) is a lower bounding linear function for f(x). :
Proof. Applying Theorem 3 to -f(x) ylelds -f(x) < -h‘p(x), ¥ <pe<§.“
2y Remark 6. For every ¢ ¢ @ there exists some x ¢ [O,I}q for which :
- e
£(x) = h(x). s
Proof. Both x = 0 and x = e, where e = (1,...,1), produce equality ';.-
. in (9), for all wed.
Remark 7. For every x ¢ {0,1}9, there exists some ¢ ¢ & such that -
£(x) = h_(x). o
(%) q)(x) 2
Proof. Use any mapping satisfying q:(QJ.) er\Q(x) for all jeN such ::::;
that Qj\Q(x) # 0; then (9):p holds as equality.]
. Thus the family :::.'
v o= (b x)|@ed] N
of upper bounding functions for f(x) is complete in the above defined sense. }::;
I-::';-:
"""""""""""""""" e S S R SN
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There is actually a more general class of upper bounding linear functions
for f(x), namely

Remark 8. Let f(x) be as in (1) with a, > 0, jeN, and let A

] i’
i er. jeN be nonnegative numbers satisfying
& (11) £ A, =1, joN.
1eq,
i h|
Define N
. "7
g h(A,x) = £ a (L A.x). el
JeN j“Qj e Bt
Then every x ¢ {0,1}% satisfies the inequality .i;i
£(x) < h(h,x)
B
v
for every A > O satisfying (11). ?33
Proof. For x ¢ {0,1}9, 31¥1?
hOLx) = E 8 (T ) o
jeN ier NQ(x) S
o
3 Tm—— ) e

A
je¥|e, sa) I 1eq, I

- — )" £(x).i [
JGNIQjGQ(x)

Like in the case of lower bounding functions, when f(x) is a quadratic

function, the class of upper bounding functions defined in Remark 8 specializes

)
teta et

to the one introduced by Hammer, Hansen and Simeone [16].
The family % introduced earlier in this section consists of those
h(\,x) such that

- 1 for i = o))

- olo gor 14 o(h).




-

Since the set Y is complete and already very large (not excluding
repetitions, |4 = ™ |Q j\), we will not consider further the more general
class of functions jd?;ined in Remark 8, but rather move in the opposite
direction of identifying a proper subset of % that is complete.

For any 9¢3, let Q(q) denote the range of ¢, 1i.e.,

Q(®) = {1 eQ|L = (]) for some jeN}.

We will say that a mapping 9 ¢ & is sequence-related if there exists a
permutation < i,,...,1 > of the elements of Q(9), with the property that for
k=1,...,m, i = ®(}) for all jeN such that i.stj but 1L¢Qj for L =1,...,k-1.
We will say that 8g = < 11,. .o ’1m > is the sequence associated with the
mapping 9. To put it differently, a mapping 9ed is sequence-related if it

can be generated as follows. Define Q = U Q,. Starting with Q defined

jeS i’
by S = N, choose some i ¢Q and set i = ¢(j) for all jeN such that { ¢Q;
then redefine Q by setting S ~ S\ {jeN|1 er}, and apply the procedure again,
stopping when Q becomes empty.

Example 2. Let Q = {1,2,3}, Q, = {1,4,5}, Q = {2,5}. Then each of

the mappings 9 cpz, ch, defined as

% 1) =1, ¢1(2) =1, @3 =2
9(1) = 1, 9,(2) =5, #,(3) =5
(93(1) =1, ¢3(2) =4, ¢3(3) = 2,

is sequence-related, with the associated sequences <1,2>, <5,1> and <4,1,2>

respectively; but the mapping

¢4(1) =1, ¢z(2) =5, 9,(3) =2

L...f..a.« -A...-&. ...&’. .' ,..':...-J_........,_‘_

;
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is not sequence-related, since for any permutation of the indices 1,5,2,
if 1 denotes the first index, then ier for some j such that 9(j) # 1. E_'::::
e
Let &' = {we@ltp is sequence-related}, and =t

U = o |oed’].

It can be shown (see below) that U'is 8 complete set of upper bounding

PO A

T

functions for f£(x). However, it turns out that &’ can be further restricted

A SR
MMM

"
i

without losing completeness.

<

LRI
LT

Let V be an arbitrary set with |V| = v, and let € be the set of all
permutations of the elements of V. For any SSV, a permutation pe¢ will be
said to represent in &€ the 2-partition (S, V\S) of V, if every element of S
precedes every element of V\S in p. 1In other words, the permutation

p=<i5,...,1 >represents the partition (S, V\S) if i ¢S and 1Lev\s

k
imply k < 4. A set of permutations PS# will be called representative (of

the 2-partitions of V), if for every S<V, the partition (S, V\S) is

. _represented in P.

Example 3. Representative sets of permutations for v, = {1,2,3} and

- v, = {1,2,3,4} are P, and P,,
Pi: 12%* P,y 123+
13* 1264 %
23* 134
3% 234 %
14 %%
2 4 % %
34 % *
4 * * K

I e AT AT e e e et s RO IP TR R L S A S AR R T ST RN ..‘.’*..
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where a star in some p ePi stands for an arbitrary element of Vi not yet

used in p. The 2-partition represented by a permutation p consists of the

nonstarred versus the starred portions of p. Thus, for example, p = <1,2,3,*>
represents the 2-partition ('{1,2,3}, {4]); similarly, p = <2,4,%,*> represents
({2,4}, {1,3D), etc.||

While the cardinality of & is v!, that of a representative subset
PC¥ is only 2v'1.

Consider now the set of sequence-related mappings §’. For any 5<Q,
we say that a mapping ped’, with associated sequence Sp = < 11,...,im >,
represents the 2-partition (S, Q\S), if ’q; is a subsequence of some permuta-
tion p = < jl""’jq > of the elements of Q, that represents (S, Q\S). A
set YC &' of sequence-related mappings will be called representative (of the
2-partitions of Q) if every 2-partition of Q is represented in Y.

New let Y&’ be representative, and define
uo = {h¢(x) \W ¢ Y} .

Theorem 4. Let £(x) be as in (1), with a, > 0, jeN. Thenuo is a

|

complete set of upper bounding functions for f(x).
Proof. For an arbitrary x ¢ {O,I}q let 9e¢VY be the mapping that

represents the partition (Q\Q(x), Q(x)) of Q (here, as before,

Q(x) 1s the support of x). Let sq’ = < 11’“"1m > be the sequence associated

with ¢, and let p = < jl""’jq > be a permutation of the elements of Q that

represents (Q\Q(x), Q(x)), such that s_ is a subsequence of p.

9
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Now 1f 1 €¢Q\Q(x), then i.‘ccQ\Q(x) for4 =1,...,m, and hw(x) =0 = £(x).

Otherwise, let h and k, respectively, be the greatest integers such that

1, €Q\Q(x) and 3§, €Q\Q(x). Then QWQ(x) = {§;,...,3, ], and {1},...,14 }eQQ@),

Denote

{1h+1,...,1m}:q(x).

Ng = <geNlo(delty, .1, 1}

Ny = {3‘N‘¢(j)e{ih+1"”'im}}

Clearly, NOUN1 Since ¢ is related to the sequence s(p, 1L£Q

3
3 j\Q (x) £ 0

implies cho, which in turn implies ©(j)¢Q\Q(x); 1.e., the condition of

for 4 ¢ {1,...,h} and jeN,, hence Q SQ(x) for all jeN,. Therefore Q

Theorem 3 holds for all jeN such that QJ\Q(x) # 0. Therefore f(x) = hcp(x).n

Example 4. As in Example 1, let
f(x) = 3x1x2x3 + lexa + XX X, .

The set & of all mappings that associate to each j¢{1,2,3] some 1cQj.
contains |Q;| X |Q,| x |Q;| = 18 elements, and the corresponding 18 upper
bounding functions hcp(x), ®c¢?, happen to be pairwise distinct. However, a
complete set ‘uo of upper bounding functions is defined by the representative
set of sequence-related mappings associated with the set P2 of Example 3

(where Q = {1,2,3,4]} plays the role of v,):

h_ (x) = 5x. + x

9 1 2

h@z(x) = le + X,
hcp3(x) = le + X,
h%(x) = 4x2 + Zx‘.
h"s(X) = 4x3 + 2x4
h%(x) = 3%, + 3x,

A

ot
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The mappings 9> k=1,...,6, correspond to the following

permutations pe¢ PZ:

k 1 2 3 4 5 6

peP {123+ 134 % 14 % % 234 % 34 * * 4 * % %

124%* 2 4 % %
Where a mapping e corresponds to more than one p ePz as for k = 1,4,
this is because different permutations containing a certain subsequence
< 11""’1m > give rise to a single mapping ¢ ¢VY related to that subsequence.
Thus, in the case of k = 1, i < 1,2 >, and in the case of k = 4, 8o = < 2,4 >
At this point we note the existence of another class of upper bounding
(affine) functions for f£(x), that can be derived by using the following —
observation., Let Q be a set whose elements are ordered in some arbitrary "":"‘1
way, Q = {1,...,q}, and let a be an arbitrary positive scalar. Denoting x;
;1 =1 - Xy for 1¢Q, it can be shown that \:\“-
peinnd
. - q-1 - q-2 _ - #-—4
(12) -a i:Q x, = a(x‘:l 11:1 X tx 1:1 X, + ot xx +x - 1) .
- o
_ Note that the right hand side of (12) has q = |Q| variable terms (each ,
one containing exactly one complemented variable) and a constant term, ' '——‘
Thus for any f(x) of the form (1) with a > 0, jeN, using (12) one can j
write u""
-£(x) = p (x,%), =
where pa is a multilinear function of the variables X, and their complements \1
;1, i er, jeN, with coefficients ay > 0 and with Ile terms for each jeN, :_,_:
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The subscript o refers to the particular ordering of the sets Qj’ jeN, which
was used in (12) to derive pa(x,;). Taking any o and applying Theorem 1,

one can derive a family of lower bounding functions gM(x,;) for Pa(x';)’

LP

NS

one for each set of the form M = j’ where Mj :Qj, jeN. Substituting
JGN -
for xi, 1¢Qj, jeN, one obtains the corresponding functions gM(x) (= gu(x,x))

- in the variables x,, and by changing signs, the affine upper bounding functions

i°
: - gy(x) for £(x).
For a given £(x) of the form (1), there are n (\Q |1) different func-
tions p (x, x) such that p (x, x) = - f(x), and for ei:: «, there are m 2|le
lower bounding functions gM(x x) (not necessarily all distinct) for gcb(‘x x),
hence upper bounding functions - g“(x) for £(x). However, as stated in the

next theorem, every such upper bounding affine function is dominated by some

linear function in the class U.

To simplify the notation, we will assume that £(x) has a single term,

s e
atals o

"

i.e., the equation - f(x) = pa(x,;) is as in (12). 1In view of Remark 2, this

R
AR RERRER
N B

PN

implies no loss of generality, Further, we shall let each of the |Q| = q :

terms of pa(x,;) be indexed by the index of its (unique) complemented variable. -

Theorem 5. Let McQ, M = {11,...,im}, with 4, < i, whenever k < 4. Then o

ﬁ.‘ ax, < - §y(x) —t
m S

for every x ¢ {0,1}9.

Proof. Applying Theorem 1 to p (x,;), we obtain the lower bounding : Eaiy

2 « o
F function

ik-l

- -— m -—

= (x,x) =a[ £ (x, + T x, - (1, - 1)) - 1]

- *u k=l Ik g1 L K

) or

a

s

.. T
‘\ . ‘. -:-.

‘e mop e " . ,
hd ._f NN NINCIEAN .1. .\- \.".' ‘:\. '\ .\.\"&'.'-';L;_'.\' “1 o _~. RN RN




R T T

xd
Ll

-17-

. n 1,-1

x)=-a[z (x, - £ x +1 -2)+1].
* et S S
Therefore
By (x) = ax, +ao(x)
_~ ' m
j-:: where
. 1 -1 3

(13) ) - o)
- o(x) =(1_-1- % x)+ L (i -2+x %) LT
o m g=1 L y=1 " i, 1=l S
; and to prove the theorem we have to show that o(x) > 0 for all x ¢ {0,1}9.
o Note that for k = 1,...,m - 1, -
= i-1
k =-11fx1=1,i=1,...,ik-1,andx =0

lk

- i=1 > 0 otherwise
": and
< 1 (=0 fx =1, 1=1,...,0 -1

im -1- X, \
i=1 LZ 1 otherwise
:'_L Since x, = 0 for some kef{l,...,m - 1} excludes x, = 1, i = 1,...,1‘1 -1 .
.': k -'V::d
~ for any 4 > k, at most one term under the summation sign in (13) can be negative, L
::f. and if there exists such a term, then
1 -1
1.-1- % =x 2>1 S
—~ i=1 -
- S
- 3
A Thus for any x ¢ {0,1}%, o(x) > 0, hence - §M(x) > ax, o ;.:::3::
4 m L
; The relation (12) can be used in the reverse direction too; i.e., in “_
:::: order to derive a set of lower bounding functions for some f(x) as in (1), t::'.'_:";
+ -t
N e
O R
. R

A N e A o N L p A I N e S
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. % Tara-e Al

with lj > 0, jeN, one can use Theorem 3 to derive a set of upper bounding o

LR a4

linear functions h (x x) for Py (x,x) = - £(x), and then substitute for x,, ¥1,

1’
to obtain a set of functions 6¢(x), whose negatives, - 6¢(x), are lower

bounding functions for £(x). 1In this case one recovers the lower bounding

function gu(x), by using the mapping ¢ which associates to the index set of

. st et s T T

each term of p (x,}), the index of its complemented variable. The functions
o
I gM(x), MC;N, can be recovered by using the same mapping for jeM, while for

jeN\M one uses a mapping that produces a lower bounding function identically

R
LR

= h
equal to zero. When the number of terms of pa(x,x) corresponding to the jt

term of f(x) is even, this is accomplished by any mapping that produces

-yl

pairwise complementary images. When it is odd, one has to use the construc- e

tion of Remark 8 to find a lower bounding function that vanishes for all

X € {O,I}q.

All other lower bounding functions that one obtains via this procedure

are uninteresting because they cannot take on a positive value for any

x ¢ {0,1}9,

X
-
3
E
-
L_:

We conclude this section by combining the above results to derive a ii:f

family of lower bounding functions for f(x) as in (1), with coefficients 'j .n%fj
- FARSEN
of arbitrary sign. Let Nt = {jeN‘aj >0}, N = {jeN\aj < 0}, and

f+(x) = ¥ a, T x, . £(x)= £ a, m x

jen* jicQj JeN© jicQJ L

For every M:N+, let

gy(x) = T (I—= a)x, - L (|Q | - La,,
Leqy je|ieQ JeM

as in Theorem 1. Let ¢ be the family of mappings % that associate to every

jeN~ some icQj, and for every o¢d”, let
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i

h-(x) = ¥ a.x .
(P j‘N- j «j)

The funection h:p(x) differs from the function hcp(x) of Theorem 3 only in

| P A L

that here the coefficients a, are negative,

b
Theorem 6. Let £(x) be as in (1). Then every x c{O,I}q satisfies

)y o £ 2 gy(x) + bo(x)

for every McN' and every 9¢ & . Further, (14) holds as equality if

and only 1if

y (15) Gatllofem| =0} & ¥ = (ar|lo,em] < 1)

g and for all jeN~ such that Qj\Q(x) £0,

i (16) e(d) e Qj\Q(x)- -

I::: Proof. The theorem follows directly from Theorems 1 and 3 and the
- fact that a vector x ¢ {0,1}% satisfies (14) with equality if and only o
M, -y
._ if it satisfies with equality both e
:f:: +

o aa7n £ (%) 2 gy(x)

;I::f and R
5 B
= (18) £7(x) > h:p(x).” ]
."_'."'. Next we define a subfamily of the lower bounding functions introduced "<
': in Theorem 6, that is complete. SRBR
' For every M:N+. let E(M) be defined as in Theorem 2, and let ;ZS'_-ZS
o )
’f. .

£ = {8y qqy 0 [MEN']

X

Further, let ¥ c4” be a representative set of sequence-related

PR ACRE LA b
bt Lt
0
[

] N
AP

A O

mappings as defined earlier, and let

L 2NN
)

3 .
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"~ = - =
% {hcp(x)ltve\f 3.
Finally, define the set

By = {ggopy ) + h;(x)|M:N+ and 9e¥’}.

Theorem 7, 130 is a complete set of lower bounding functions for f(x).

Proof. Follows from the completeness of £; and 'ua”

3. Linearizing Multilinear Inequalities in 0-1 Variables

In this section we linearize the multilinear inequality

) f(x) = £ aj( m xi.) <b 1
JeN 7 Leqy

by defining a family ¥ of linear inequalities, equivalent to (2) in the sense ‘
that a 0-1 vector x satisfies f£(x) < b if and only {f it satisfies the 1linear L—:.:.
inequalities in 7, *\-E\E
We continue to use the notation introduced earlier. In particular, o

e'e’s
"
ko d

P
r e

'y
* ¢

+ - -
N, N, £ (x) and £ (x) are as in Theorem 6.

." '\

A set MCN is said to be a cover for the inequality (2), if

A cover M is said to be mipimal, if T is not a cover for any T g M.
It follows from this definition that a set MGN+ is a cover for the
}) inequality

| h £x) <b

i
; if and only 1if
b

r a,>b,
jau 3

-,

- g . .t - P . PN oA S L - g et T el e VR 'f' e e S N SRR O S K
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Theorem 8. Let
C= {M:N"'lu is a cover for (2+)}.

and let gM(x), h;(x) and ¢~ be as in Theorem 6. Then xe¢ {0,1}9 satisfies (2)
if and only if it satisfies

A9y o By + h;(x) <b

for every MeC and 9ed .

Proof. From Theorem 6, if x ¢ {0,1}% satisfies (2), then

gy (X) + h;(x) <f(x) <b

for every ®¢ 2 and every M=N+, hence every M¢C. This proves the "only if"
part of the Theorem. To prove the "if" part, suppose £(X) > b for some

%#¢{0,1}9. From Theorem 6, there exists M0:N+ and @, ¢ $” such that

(20) guo(i) + h;o(:'i) = £(X) >b,

i.e., X violates the inequality (19)y

R b h that
0% It remains to be shown Mo

is a cover for (2+). We have

la,| 28, &® (from the definition of g, )
sy l 4 ™

>b - h (2) (from (20))
%

>b (since - h_ (%) >0),
%0

hence M 1s a cover for eh.|
Let 8 be the system of linear inequalities (19)M . for all M¢C and
9
$e¢d . According to Theorem 8, the system 8 is equivalent to (has the same

solution set as) the nonlinear inequality (2). As one may suspect from
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Theorem 7, 8 is not a minimal set with this property. Indeed, for M:N+,

let E(M) be defined as in Theorem 2; and let ¥" <& be a set of representative

sequence-related mappings. We then have

Theorem 9. Theorem 8 remains true if the system (19)M @ ve¢? and

MeC is replaced by ‘ e

2 -
QL o gy (® - hox) b, y
for every MeC and ge¥ .
Proof. Along the same lines as the proof of Theorem 8, using the __4

fact that, from Theorem 7, there exists M0:N+ and % ¢Y¥™ such that D
Bpy B + b () = £G). T

oy

- - —

Since ¥ is a proper subset of ¢ , and different sets M:N+ under
certain conditions give rise to the same set E(M), the system 80 of linear ':éfj:}f
inequalities (21)M’¢s Me¢C, 9e¥ , is a proper subset of 3, and usually of .
e

much smaller cardinality. T
Sl

It 1is sometimes desirable to use an alternative linear{zation of ;j:::-":

the nonlinear inequality (2), obtained by first replacing (2) with an P

equivalent system of (nonlinear) inequalities whose coefficients are
all positive, and then linearizing this system. The first of these two o
steps is easily accomplished by replacing £ (x) in (2) with the family

of lower bounding functions h:p(x), cch: and then complementing xj, JeN:

Theorem 10. A vector x ¢ {0,1)9 satisfies (2) if and only if it

satisfies

+ -
22) ffx) + £ Ja <b- % a

for every eV .,
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Proof. The "only if" part follows from the fact that -

(23) < £ (%) o
JGN 5 e(s) = i

for all 9e¥~. The "if" part follows from the fact that the set of lower o

bounding functions h;‘p(x), pe¥", for £ (x), is complete.

Remark 9. Theorem 10 remains true if ¥ is replaced by &~.
Note that if we first replace (2) by the family (22)(9, 9e¢® and then ....

generate the sets scp of linear inequalities equivalent to each inequality (22)‘9,

we end up with a family ¥ = U _ 8§  of linear inequalities that is a proper o
ped N
superset of the family 8 generated directly from (2). The reason for -

this is that, applying Theorem 8 to an inequality (22)¢, produces a linear

inequality for every cover MEN for (22)(0, hence for (2); whereas applying

[ PR A S ]
LA A Lt e e et e
R [ A

it to the inequality (2), produces linear inequalities only for covers

MGN+ for (2+). It is easy to see that if MICN and MZCN are covers for

(2), we may have M, # M,, but M nnt sz‘lN . On the other hand, MeN is a

cover for (2) if and only if MUN is a cover for (22)¢, % 9ecd . Thus the .....

system of linear inequalities $, obtained by applying Theorem 8 directly to .—

(2), is the subsystem of 5 whose inequalities correspond to those covers

MEN such that N  cM.
[ Next we turn to another way of using complements of the variables, ‘_:
f": By reversing the sense of the inequality in the system (IQ)M,:D’ MeC, 0ed”, ~S
e and complementing the variables X, ieQM, an immediate strengthening of some _’

inequalities can often be obtained. For any e 3, we will again denote

St
ele s

Q~p = {1 eQ|it = @(§) for some jeN-].

T

i\

Theorem 11. The vector x ¢ {0,1}9 satisfies (2) if and only i{f it satisfies

i. -~ ~_._‘
- i
:’-:. (24) T M ; + T a"x > M o
e M, 171 i1 = %
:.:': i CQM i ‘Q@ .:~.:

L 'R

- g
=l

..-'."lf.’ CANE BT L UL I, I AL T S IR I S ~..\.
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o,
RSN

ool

=24
for every MeC, 9ed , where e
o:z= z aj-b(>0), R
jeM o
M M -
o, = min{ao, = aj} . ieQM,
jeM]i.ctQJ
and .
. Bi = min{ag’ : lajl}, i GQ‘p . -F.-
L Jo~ | 1=0(3) N
Proof. Substituting for SM(x) and h(p(x) in (19)!4,{9 their expressions :::f:::
in terms of the coefficients aj, jeN, yields b
(199 T (C— a/)x, + L ax <b+ £ (|Q,] - Da, .
: Substituting 1 - ?:'1 for x,, 1¢Q,, and - |aj\ for a,, jeN”, and collecting
terms for each i ¢Q¢, then changing the sign of the inequality, produces
. (25) I (T apx, + B (T lahx; 2 T &, -,
2 1eq, jeM{ieQ, 16q, JeN~ {1=g(}) jeM e
. ’:x:'u
‘\:_ since ..
r (==——T aj)l = T |Qj|aj . v
' 1¢Q, jeM{ieQ jeM R
: 3
:: Since M ¢C, the right hand side of (25) is positive.
. o
. Finally, since all coefficieats of (25) are positive, each coefficient N
" N
L whose value exceeds that of the right hand side can be reduced to the value ‘.;:‘_:_\_
- ‘ F:h.;q.
¥ of the latter, without cutting off any 0-1 point x satisfying (25)..] ‘é\:.
" Note that if for some 1 cQN and jeN~ we have L = (j), then (21»)M ® ‘
» ’ ~e"a
", - ‘Q...Q:.
‘,: has a temm {n L and one in X Each such pair can obviously be reduced to a :‘_
o o
i single term, with a corresponding adjustment of the constant on the right \ﬁ‘:
r ‘..
ST LI IR LIPS ) . ~ - s *a ™R g L™ 'k.‘\::‘:‘::\\
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; hand side. Since this adjustment reduces the value of the right hand side, ——
N the presence of such terms denotes a certain "weakness" of the inequality. iii;
~i; This weakness can partly be made up by reducing those coefficients on t;ii
the left hand side whose value exceeds the new value of the right hand =

side. To be specific, let us denote ;.j

QO = {i eQMli ¥ o(§), ¥ jeN } L

o
"

I {ieQMli = @(j) for some jeN , and Q-I;IZ s‘:}

o
o
\

= {i eQ\QM\i = @(j) for some jeN }

®(j) for some jeN and Bi > Q?} o

L
b
[

= {teQylt
- and let Q" = QUQy, Q7 = QqUQ. S

Theorem 12. For any x ¢ {0,1}%, the inequality (24)y " implies e
]

.- (26),, . T OY.X, + T Y.X, > Yo,
- M gt Tl g 11T

e where e
Yo = max{0, op - L Bf - I o) »
ich ieQi [

- and -
e + -
'. Yi = min{Yoa 'Y;} » 1eQ UQ,

- with -
- M + :
(o4 1eQ,

o M ¢ 1eQ)

0 1 laninats
K Y, = oo
{7\ o .
> By 1eQ
;-_‘ .u':\v
¢ _ M -
- \P1 " Leq, oo
= + ~
- Proof. For i te, el
o M= |, ¢ M P= ¥ s
.. = - + e
- op By *Byxy = (o - BOx By Y
::.' BT ST L T ottt et at etk vm et R T ST S T SN S PRI N R T S SR .\::::::
‘ e e T e e S A et R L L Y RO NN




«26= '.:::1
while for { eQ; s -
M- o _a? _ M M .
ag Xy +ByXy = By - a® oy o
Substituting these expressions into (24)M @ yields -~
- ]
C"_:-
e L V%, + I vix >v
E i sQ+ i1 16Q" 171 0
X , , -
ol and replacing Y, with m:l.n{Yo, Yi} produces (26)}1,:9’“ .
E:::j For MCN+, denote C(M) = MUN", Note that C(M) is a cover for (2)
: if and only 1f M is a cover for (2'). 1If C(M) is a minimal cover for (2),
F: then M is a minimal cover for (2+); but the converse is not true. On the .-
'.::-.' other hand, if M is a minimal cover for (2+) and laj‘ 2 min a, for all jeN ,
.‘:. { .'~_'.
L then C(M) is a minimal cover for (2). o
- Theorem 13, Let C(M) be a minimal cover for (2). Then af = dlg' ¥1 cQM, :
@ _ M M - ‘.'._'.
By = ags ¥ 16Q,, and g > 0. Further, if 9(j) cQ\QM, ¥ jeN~ (i.e., o
QMﬂQ;p = 0), then (26)M,cp is the same as (24)M’cp which can be written as
.-ﬁ.
@y, E X%+ I x 2L ™
’ *
1eQy 18Q¢ L
Proof. Let C(M) be a minimal cover for (2). Then _
(28) z la,l cb - = a, + |a| ¥ keMUN™ N
jec() 3 jeN- 3 ko i
and therefore, for any icQM, :'.:'-:Z
R
: = a; > uinfa,|
M jeM|ieQ 3 keM e
: > L a, -b=ol  (from (28)) -
= 3 Qo ’ 4
JeM AR
M M
which proves that a = ¥y i cQM. .
et ot ettt ettt g ot e
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P Also, for any ieQ and keN~ such that 1 = @k), from (28) we have -
P Emm—— &, -b=d o
- \aj\ 2 ‘ak\ 2 L a -b=aq, e
jeNT|1=(§) 1eM o
{ &
i i.e., Bi = ag, ¥ ch- , where a‘; > 0 since M 18 a cover for (2+). L
Further 1f 9(j) ¢Q\Q, ¥ JeN”, then Q'{UQ; =9, and y, = a‘i‘, 1eqt,
= w =
Yi Bi’ ieQ in (26)M,cp' Thus, in this case (26)M,:p is the same as (za)M,cp’ =
P and the latter can be written as (27)M ° P
?
f_ Remark 10. If C(M) is a minimal cover for (2) and ep(j)sQM for some f.:g
s © jeN7, the inequality (26), © is vacuous. -
b} .
P: Proof. If C(M) is a minimal cover for (2), then al: = al(\)l’ i eQM, and :ﬂ
b . -
» M - - M
:':. Bf = o ieQw. 1f, in addition, ?(j*) €Qy for some j, €N , then Yy, = 0 and
hence v, = 0, 1¢Q UQ7, L.e., (26)y , 1s vacuous.|
s 9 S
h Example 5. Consider the inequality —
f(x) = 3::1::2::3 + 3x2x4 + ax1x4 - lexsx6 - XgXg = 4x1x3x6 <2, o
and let the sets Qi’ i=1,...,6, be numbered from left to right. Choosing ‘___
M = {1,2,3} and @ such that ©(4) = 1, ®(5) = 9(6) = 3, one obtains the o7
inequality (of the form (24), )
M,
7x, + 6x2 + 3x3 + 7x4 + 2x1 + Sx3 > 8.
After reducing the terms involving the pairs (;1, xl) and (;3, x3), ::_::',
one obtains -'_:::
le + 6::2 +7x, + 2x3 23
which in turn implies the inequality (of the form (26)M w)
9
3x1 + 3x2 +3x, + 2x3 2 3. =
:
e e NI N N NN NG
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Now let M = {2} and ¢ be as above; then C(M) is a minimal cover for

£(x) < 2, and 9(j) ¢Q\M, ¥ JeN . The corresponding inequality

X, +x, +x, +x >1

1 3

i PP AR . R RAIRAGR | ol A

is of the form (27)M ¢~i‘
9

Thus, when MCN+ and @e¢¥ are chosen such that C(M) 1is a minimal

. cover for (2) and %) ¢Q\Q, for all jeN, (26)u,¢ takes on the form (27)u,¢ :__

N of a generalized covering inequality. While the generalized covering L

E inequalities (27)M’¢ all correspond to minimal covers MCN+, the remaining .

ﬁ generalized covering inequalities implied by (2), corresponding to minimal ;‘;L;.
covers M¢N+,'can be derived by applying Theorem 11 to the family of in-

equalities (22)‘9, we¥ (with M a minimal cover for (22)¢) rather than

directly to (2). The set of all generalized covering inequalities corres- :
ponding to minimal covers for (2) has been shown by Granot and Hammer ([14]

to be equivalent to (in the sense of having the same 0-1 solutions as)

the nonlinear inequality (2). However, when Theorem 11 is applied to the
inequality (2) with covers M that are not minimal, it produces linear
inequalities that are not of the generalized covering type.

These other inequalities give rise to alternative linearizations S
of (2). In fact, these linearizations are typically more compact, i.e.,
involving fewer inequalities, than the family of generalized covering

inequalities, This 1is illustrated in the following example.

Example 6. Consider the inequality

29) <
(29 10x,xq + 9%y%g + 8yx, + 8x,x, + 8xqx, + 5x,x; < 20.

There are 20 minimal covers M for (29), and the corresponding sets QVI -
&

LN

are shown in the table below. Each of these minimal covers gives rise e

to a set covering inequality and all twenty of them are required to linearize :'.::::::::

(29). Lo

' RSt

LWL PSR I R P N LIPS P P IR PR TR P PN JPAL IR S O S I P P e ' % " M " e e A" A" a" s 4% e" .e® a0 6" a e " A NN . o
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™ i
& N
- -29- i
N 0.,
A3 el
Yo M Q Implied by —
;- 1 1,2,3 123 7809 A) o
¥ 2 1,2,4 12 6 89 () i
- 3 1,2,5 1234 89 A) e
4 1,2,6 12 5 89 (c) -
. 5 1,3,4 1 3 67 9 D) ~
- 6 1,3,5 1 34 9 (D) o
: 7 1,3,6 123 5 7 9 A) i
A
8 1,4,5 1 34 6 9 (D) N
9 1,4,6 12 6 9 (©)
10 1,5,6 1234 9 (A) e
11 2,3,4 123 678 (a) -
12 2,3,5 234 8 (B) .
13 2,3,6 23 5 78 (B) o
14 2,4,5 1234 8 ()
15 2,4,6 12 8 (©) i
P 16 2,5,6 2345 8 (B) —
—l
17 3,4,5 1 34 67 (D) S
y 18 3,4,6 123 (A) S
19 3,5,6 345 7 (B) B
20 4,5,6 123456 A) -:
R Now, applying Theorem 11 to inequality (29) with M - {1,2,3,4,5,6} R
.j:' we obtain the linear inequality (24)M ;f
" 1
A) 18x1 + llox2 + 16:;:3 + 8x“ + Sx + 8x + 8x + 9x8 + 10x9 > 28
- Repeating this procedure with the sets M, = {2,3,5,6], My = {1,2,4,6}, and R
::Z; M, = {1,3,4,5}, we obtain the linear inequalities ': 1
,;' (3) lox, + 10x, + 8x, + 5xg + 8x, + 9xg > 10 :.-:-_'%
- = - - - - - R
o © 12x, + 12x, + 5x5 + 8xg + 9%g + 10xy > 12 ,::'.,:.j-
e BOER
% — s v em - 2
.:-. (D) 14x1 + 14x3 + 8xa + 8:6 + 8x7 + 10x9 > 1 ::::::t,J
= -
"""""""""""""""""""" ‘\.'- O T R T S S R o e A ey '-.‘\'\"12:.::;
'f".r:’.r:f :;.}fi'i:t:';u'.r.f..f_ . f.;‘...uA' G NN A R0 e e e N N S N
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respectively. One can verify that each of the 4 inequalities (A)-(D)

U M

4
a “al

implies several of the set covering inequalities, as shown in the last column

LS

of the table, and together they are equivalent to the 20 set covering in-

A

equalities, i.e., to the nonlinear inequality (29).||

In the above example, none of the four covers used to obtain the
inequalities (A)-(D), was minimal, This suggests that an inequality obtained , ;?;é
from a minimal cover could be strengthened by extending the cover. While tk.. -::j
was shown to be always true in the linear case [4], it turns out not to be
always true in the case discussed here. In a companion paper [7], we examine
dominance relations between the linesar inequalities of the family defined by _;;4

Theorem 11, and give necessary and sufficient conditions for the extension of

WP

a minimal cover to produce a strengthening of the associated inequality. Based
S on these conditions, we have developed and implemented a class of algorithms

for solving nonlinear 0-1 programs, that start by generating linear inequalities Y
- from minimal covers, and then successively extend the covers to strengthen the
- inequalities whenever the above mentioned conditions are met. 1In (7] we .
describe several variants of this class of algorithms and discuss our computa- :j:?
tional experience on nonlinear O-1 programs with up to 20 constraints, 50

A% variables, and 60 terms per constraint.
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